Date: 23

Surface Area of Pyramids

A pyramid is a three-dimensional object with a polygon as its base and lateral sides that are triangles.

The triangles meet at a point, called the apex.

The net of a pyramid will consist of the base (a polygon) plus as many triangles as there are sides to the base. The net of a square-based pyramid is shown below.

s = slant height (height of triangle - distance an ant would crawl from the middle of one side of the base to the point)

Be careful... h and s are NOT the same!!!

You may need to use the Pythagorean Theorem to find one, given the other.

$$r^2 + h^2 = s^2$$
 $(r = b \div 2)$

Find the surface area of the square-based pyramid below. Round your answer to the

Sides:
$$24$$

$$A = 24 \times 16$$

$$= 192 \text{ m}^2 \text{ each}$$

Find the surface area of the square based pyramid. Round your answer to the nearest hundredth.

$$SA = b^{2} + 2bs$$

= $22^{2} + 2 \times 22 \times 14.213$
= $484 + 625.372$
= 1109.37 cm^{2}

Surface Area of Cones

A cone is like a pyramid, but it has a circular base.

The net of a cone is a sector of a large circle, and the circular base of the cone.

Find the surface area of a cone that has a radius of 12 feet and a slant height of 15 feet. Round your answer to the nearest hundredth.

Find the surface area of the cone shown below. Round your answer to the nearest hundredth.

$$SA = \pi \times 4.8^{2} + \pi \times 4.8 \times 13.670$$

= 72.382 + 206.139
= 278.52 cm²