

APPRENTICESHIP MATH 12
 DATA SHEET

Common Length Conversions

Imperial	Imperial and SI	SI
1 foot $=12$ inches	1 inch $=2.54 \mathrm{~cm}$	$1 \mathrm{~cm}=10 \mathrm{~mm}$
1 yard $=3$ feet	1 foot $=30.48 \mathrm{~cm}$	$1 \mathrm{~m}=100 \mathrm{~cm}$
1 yard $=36$ inches	1 yard $=0.9144 \mathrm{~m}$	$1 \mathrm{~m}=1000 \mathrm{~mm}$
1 mile $=1760$ yards	1 mile $\approx 1.609 \mathrm{~km}$	$1 \mathrm{~km}=1000 \mathrm{~m}$
1 mile $=5280$ feet		

Area and Perimeter

Geometric Figure	Perimeter	Area
Rectangle	$P=2 l+2 w$ or $P=2(l+w)$	$A=l w$
Triangle	$P=a+b+c$	$A=\frac{b h}{2}$
Circle	$C=\pi d$ or $C=2 \pi r$	$A=\pi r^{2}$

Surface Area

Geometric Figure	Surface Area
Cylinder	$\begin{aligned} & A_{\text {top }}=\pi r^{2} \\ & A_{\text {base }}=\pi r^{2} \\ & A_{\text {side }}=2 \pi r h \\ & S A=2 \pi r^{2}+2 \pi r h \end{aligned}$
Sphere	$S A=4 \pi r^{2}$ or $S A=\pi d^{2}$
Cone	$\begin{aligned} & A_{\text {side }}=\pi r s \\ & A_{\text {base }}=\pi r^{2} \\ & S A=\pi r^{2}+\pi r s \end{aligned}$
Square-Based Pyramid	$\begin{aligned} & A_{\text {triangle }}=\frac{1}{2} b s(\text { for each triangle }) \\ & A_{\text {base }}=b^{2} \\ & S A=2 b s+b^{2} \end{aligned}$
Rectangular Prism l	$S A=w h+w h+l w+l w+l h+l h$ or $S A=2(w h+l w+l h)$

Volume

Prisms and Cylinders: $V=A_{\text {base }} \times h$

Sphere: $V=\frac{4}{3} \pi r^{3}$ or $V=\frac{4 \pi r^{3}}{3}$
Pyramid (Rectangular Base): $\ldots \ldots . . V=\frac{1}{3} l w h$ or $V=\frac{l w h}{3}$
Cone:.. $V=\frac{1}{3} \pi r^{2} h$ or $V=\frac{\pi r^{2} h}{3}$

Triangles

Pythagorean Theorem	$\mathrm{a}^{2}+\mathrm{b}^{2}=\mathrm{c}^{2}$
Sum of Angles	$\angle A+\angle B+\angle C=180^{\circ}$
Trigonometric Ratios SOH CAH TOA	$\begin{array}{ccc} \sin \theta=\frac{o p p}{h y p} & \cos \theta=\frac{a d j}{h y p} & \tan \theta=\frac{o p p}{a d j} \\ \theta=\sin ^{-1}\left(\frac{o p p}{h y p}\right) & \theta=\cos ^{-1}\left(\frac{a d j}{h y p}\right) & \theta=\tan ^{-1}\left(\frac{o p p}{a d j}\right) \end{array}$
Similar Triangles	$\begin{aligned} & \angle A=\angle X \\ & \angle B=\angle Y \\ & \angle C=\angle Z \end{aligned} \quad \frac{a}{x}=\frac{b}{y}=\frac{c}{z}$

Financial Literacy

Simple Interest	$I=P r t$
Compound Interest	$A=P\left(1+\frac{r}{n}\right)^{n t}$
Rule of 72	Years to double investment
$=72 \div$ interest rate (as \%)	

