\qquad
Date: \qquad

$$
\begin{array}{cc}
P(A)=\frac{\text { Total number of favourable outcomes }}{\text { Total number of outcomes in sample space }} & P\left(A^{\prime}\right)=1-P(A) \\
P(\mathrm{~A} \cup B)=P(A)+P(B) & P(A \cup B)=P(A)+P(B)-P(A \cap B) \\
P(A \cap B)=P(A) \times P(B \mid A) & P(A \cap B)=P(A) \times P(B)
\end{array}
$$

1. The odds against rain tonight are $2: 1$. The probability of rain is
a. 2
b. $\frac{2}{3}$
c. $\frac{1}{2}$
d. $\frac{1}{3}$
2. Select the dependent events.
a. $P(A)=0.21, P(B)=0.6$, and $P(A \cap B)=0.122$
b. $P(A)=0.8, P(B)=0.52$, and $P(A \cap B)=0.416$
c. $P(A)=0.74, P(B)=0.85$, and $P(A \cap B)=0.629$
d. $P(A)=0.46, P(B)=0.9$, and $P(A \cap B)=0.414$
3. A committee of 6 students is to be selected from 5 boys and 6 girls. The probability that there are exactly 2 boys on the committee is represented by
a. $\frac{2}{11}$
b. $\frac{{ }_{5} C_{2} \cdot{ }_{6} C_{4}}{{ }_{11} C_{6}}$
c. $\frac{{ }_{5}{ }_{11} C_{2} C_{6}}{{ }_{11} C_{6}}$
d. $\frac{{ }_{5} C_{2}}{2 \cdot{ }_{6} C_{4}}$
4. The probability that Vince will study on Friday night is 0.6 . The probability that he will go out for dinner is 0.8 . The probability that he will do at least one of these activities is 0.9 . Determine the probability that he will do both activities.
5. Isabella and Makayla each attempt a three-point shot in basketball. The probability that Isabella is successful is 0.2 and the probability that Makayla misses is 0.85 . The events are independent.
What is the probability that only one player is successful?
