\qquad

Fundamental Counting Principle (4.1)

- Fundamental Counting Principle applies for tasks connected by the word AND:

MULTIPLY the number of ways each task can be performed (think about whether or not repetition is allowed)

$$
__{\ldots} \times \ldots \ldots \ldots
$$

- For tasks connected by the word OR:

ADD the number of ways each task can be performed (use the Principle of Inclusion and Exclusion to avoid double-counting if there is overlap)

Factorial Notation (4.2)

$$
n!=n(n-1)(n-2) \ldots(3)(2)(1)
$$

- this represents the number of permutations of a set of n different objects (all n of them are used)
- same as ${ }_{n} P_{n}$

Permutations with Different Objects (4.3)

$$
{ }_{\mathrm{n}} \mathrm{P}_{\mathrm{r}}=\frac{\mathrm{n}!}{(n-r)!}
$$

- this represents the number of permutations (order matters) of a set of n different objects, where only r of them are used in each arrangement

Permutations with Identical Objects (4.4)

$$
P=\frac{\mathrm{n}!}{a!b!c!\ldots}
$$

- this represents the number of permutations of a set of n different objects, where a are identical, another b area identical, another c are identical, and so on
- can be used for route problems

Combinations (4.5 and 4.6)

$$
{ }_{\mathrm{n}} \mathrm{C}_{\mathrm{r}} \text { or }\binom{n}{r}=\frac{\mathrm{n}!}{r!(n-r)!}
$$

- this represents the number of combinations (order does not matter) of a set of n different objects, where only r of them are used in each arrangement

