adapted from: BLM 3–9

Chapter 3 Practice Test

For #1–#3, select the best answer.

- **1.** What is the coefficient of the expression $-3(4)^5$?
 - **A** -1 **B** -3
 - **C** 4 **D** 5
- **2.** How can you write the expression $\frac{2^4 \times 2^6}{2^2}$ as a single power?

A 2¹² **B** 2²²

C 2^5 **D** 2^8

3. René simplifies the following expression. Determine the step that contains the first error.

5	$\times 4 - 2(3)^2$		
= 5 × 4 – 2 × 9		Step 1	
= 20 ₋ 2 × 9		Step 2	
= 18 × 9		Step 3	
= 162		Step 4	
Α	Step 1	В	Step 2
С	Step 3	D	Step 4

4. Write the expression in repeated multiplication form. Then evaluate.

$$\frac{(-2)^3(-2)^4}{(-2)^6}$$

5. Write the expression as a single power: $7^8 \times (7^3)^4$.

Copyright © McGraw-Hill Ryerson 2016 978-1-25-985477-4 6. Write the number 1 *billion* as power with base 10.

- **7.** A population of rabbits triples in number every 4 months. If there are initially 20 rabbits, how many will there be in
 - a) 1 year
 - b) 20 months
 - c) n months

- 8. Re-write each of the following as a division of two powers.
 - a) $\left(\frac{2}{3}\right)^4$
 - **b)** $\left(-\frac{5}{2}\right)^3$
 - $c) \left(\frac{x}{y^2}\right)^4$

- **9.** A cube has a surface area of 54 cm^2 .
 - a) Determine its edge length.
 - **b)** Write the volume of the cube as a power with an exponent of 3.

10. Rewrite each expression as a single power where the exponent does not equal 1.

a)
$$\left(\frac{8^5}{8}\right)^4$$

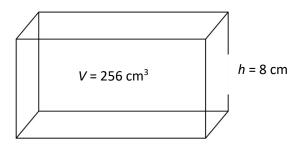
b)
$$\frac{\left((-4)^3(-4)^2\right)^4}{(-4)(-4)^7}$$

$$c) \left(\frac{4^5}{4^2}\right)^4 \times 2^2$$

11. Arrange the following three powers in order from smallest to largest by rewriting each power as a power in base 2: 8⁴, 4⁵, and 2¹¹.

12. Evaluate the following expressions. Show your steps!

a)
$$(-2)^4 - 2^4$$
 b) $3 + 4 \times 5 + 2(-3)^2$


c)
$$-5 + (2^2)^3 + (3 \times 4)^2$$
 d) $\left(\frac{-2}{3}\right)^2 - \frac{4}{3^3}$

13. Explain the mistake in Chad's solution, then provide the correct answer.

$$7 \times 2 + 8^{2}(4 \times 2)^{3}$$

= 7 × 2 + 8²(8)³
= 7 × 2 + 8⁶
= 7 × 2 + 262 144
= 14 + 262 144
= 262 158

EXTRA CHALLENGE

14. A rectangular-based prism has a volume of 256 cm³ and height of 8 cm.

a) Find the area of the base by converting each value to base 2 and then using exponent rules.

b) If each dimension of the base is a power of 2 with an exponent of at least 1, find all possible dimensions of the base.

15. Each of the numbers 2, 3, 4, and 5 is substituted in some order for the letters *a*, *b*, *c* and *d*. What is the largest value possible for the expression, $a^b + c^d$?

1. B 2. D 3. C **4.** $\frac{(-2)(-2)(-2)(-2)(-2)(-2)(-2)}{(-2)(-2)(-2)(-2)(-2)(-2)} = -2$ **5**. 7²⁰ **6.** 10⁹ **7. a)** 540 **b)** 4860 **c)** $20\left(3^{\frac{n}{4}}\right)$ **c)** $\left[\frac{x^4}{(y^2)^4}\right]$ or $\frac{x^4}{y^8}$ 8. a) $\frac{2^4}{3^4}$ b) $\frac{(-5)^3}{2^3}$ or $\frac{5^3}{(-2)^3}$ **9. a)** 3 cm **b)** V = 3³ **10.** a) 8¹⁶ b) (-4)¹² c) 4¹³ or 2²⁶ **11.** rewrite each with a base of 2: $8^4 = (2^3)^4 = 2^{12}$, $4^5 = (2^2)^5 = 2^{10}$ smallest to largest: 2^{10} , 2^{11} , $2^{12} \rightarrow 4^{5}$, 2^{11} , 8^{4} **12. a)** 0 **b)** 41 **c)** 203 **d)** $\frac{8}{27}$ 13. Chad should have added the exponents, not multiplied them: $7 \times 2 + 8^{2}(4 \times 2)^{3}$ $= 7 \times 2 + 8^{2}(8)^{3}$ $= 7 \times 2 + 8^{5}$ = 7 × 2 + 37 768 = 14 + 37 768 = 32 782 14. a) $V = I \times w \times h$ $V = A \times h$ $256 = A \times 8$ $2^{8} = A \times 2^{3}$ $2^{8} \div 2^{3} = A$ $2^{8-3} = A$ $2^{5} = A$ 32 = A **b)** $h = 8 \text{ cm} = 2^3 \text{ cm}$ $A = 32 \text{ cm} = 2^5 \text{ cm}$ $l = 2^{1} = 2$ cm. $w = 2^{4} = 16$ cm $l = 2^2 = 4$ cm, $w = 2^3 = 8$ cm $l = 2^3 = 8$ cm, $w = 2^2 = 4$ cm $l = 2^4 = 16 \text{ cm}, w = 2^1 = 2 \text{ cm}$ **15.** $2^3 + 4^5 = 1032$