\qquad

Chapter 3 Practice Test

For \#1-\#3, select the best answer.

1. What is the coefficient of the expression $-3(4)^{5}$?
A -1
B - 3
C 4
D 5
2. How can you write the expression $\frac{2^{4} \times 2^{6}}{2^{2}}$ as a single power?
A 2^{12}
B 2^{22}
C 2^{5}
D 2^{8}
3. René simplifies the following expression. Determine the step that contains the first error.

$$
\begin{aligned}
& 5 \times 4-2(3)^{2} \\
= & \\
=2 \times 4-2 \times 9 & \text { Step 1 } \\
=20-2 \times 9 & \text { Step 2 } \\
=18 \times 9 & \text { Step 3 } \\
=162 & \text { Step 4 }
\end{aligned}
$$

A Step 1
B Step 2
C Step 3
D Step 4
4. Write the expression in repeated multiplication form. Then evaluate.

$$
\frac{(-2)^{3}(-2)^{4}}{(-2)^{6}}
$$

5. Write the expression as a single power: $7^{8} \times\left(7^{3}\right)^{4}$.
6. Write the number 1 billion as power with base 10.
7. A population of rabbits triples in number every 4 months. If there are initially 20 rabbits, how many will there be in
a) 1 year
b) 20 months
c) n months
8. Re-write each of the following as a division of two powers.
a) $\left(\frac{2}{3}\right)^{4}$
b) $\left(-\frac{5}{2}\right)^{3}$
c) $\left(\frac{x}{y^{2}}\right)^{4}$
9. A cube has a surface area of $54 \mathrm{~cm}^{2}$.
a) Determine its edge length.
b) Write the volume of the cube as a power with an exponent of 3 .
10. Rewrite each expression as a single power where the exponent does not equal 1 .
a) $\left(\frac{8^{5}}{8}\right)^{4}$
b) $\frac{\left((-4)^{3}(-4)^{2}\right)^{4}}{(-4)(-4)^{7}}$
c) $\left(\frac{4^{5}}{4^{2}}\right)^{4} \times 2^{2}$
11. Arrange the following three powers in order from smallest to largest by rewriting each power as a power in base 2: $8^{4}, 4^{5}$, and 2^{11}.
12. Evaluate the following expressions. Show your steps!
a) $(-2)^{4}-2^{4}$
b) $3+4 \times 5+2(-3)^{2}$
c) $-5+\left(2^{2}\right)^{3}+(3 \times 4)^{2}$
d) $\left(\frac{-2}{3}\right)^{2}-\frac{4}{3^{3}}$
13. Explain the mistake in Chad's solution, then provide the correct answer.

$$
\begin{aligned}
& 7 \times 2+8^{2}(4 \times 2)^{3} \\
= & 7 \times 2+8^{2}(8)^{3} \\
= & 7 \times 2+8^{6} \\
= & 7 \times 2+262144 \\
= & 14+262144 \\
= & 262158
\end{aligned}
$$

EXTRA CHALLENGE

14. A rectangular-based prism has a volume of $256 \mathrm{~cm}^{3}$ and height of 8 cm .

a) Find the area of the base by converting each value to base 2 and then using exponent rules.
b) If each dimension of the base is a power of 2 with an exponent of at least 1 , find all possible dimensions of the base.
15. Each of the numbers $2,3,4$, and 5 is substituted in some order for the letters a, b, c and d. What is the largest value possible for the expression, $a^{b}+c^{d}$?
16. B 2.D 3. C
17. $\frac{(-2)(-2)(-2)(-2)(-2)(-2)(-2)}{(-2)(-2)(-2)(-2)(-2)(-2)}=-2$
18. 7^{20}
19. 10^{9}
20. a) 540 b) 4860 c) $20\left(3^{\frac{n}{4}}\right)$
21. a) $\frac{2^{4}}{3^{4}}$
b) $\frac{(-5)^{3}}{2^{3}}$ or $\frac{5^{3}}{(-2)^{3}}$
c) $\left[\frac{x^{4}}{\left(y^{2}\right)^{4}}\right]$ or $\frac{x^{4}}{y^{8}}$
22. a) 3 cm b) $V=3^{3}$
23. a) 8^{16} b) $(-4)^{12}$ c) 4^{13} or 2^{26}
24. rewrite each with a base of $2: 8^{4}=\left(2^{3}\right)^{4}=2^{12}, 4^{5}=\left(2^{2}\right)^{5}=2^{10}$ smallest to largest: $2^{10}, 2^{11}, 2^{12} \rightarrow 4^{5}, 2^{11}, 8^{4}$
$\begin{array}{llll}\text { 12. a) } 0 & \text { b) } 41 & \text { c) } 203 & \text { d) } \frac{8}{27}\end{array}$
25. Chad should have added the exponents, not multiplied them:

$$
7 \times 2+8^{2}(4 \times 2)^{3}
$$

$$
=7 \times 2+8^{2}(8)^{3}
$$

$$
=7 \times 2+8^{5}
$$

$$
=7 \times 2+37768
$$

$$
=14+37768
$$

$$
=32782
$$

14. a) $\quad V=I \times w \times h$
$V=A \times h$
$256=A \times 8$
$2^{8}=A \times 2^{3}$
$2^{8} \div 2^{3}=A$
$2^{8-3}=A$
$2^{5}=A$
$32=A$
b) $h=8 \mathrm{~cm}=2^{3} \mathrm{~cm}$
$A=32 \mathrm{~cm}=2^{5} \mathrm{~cm}$
$I=2^{1}=2 \mathrm{~cm}, w=2^{4}=16 \mathrm{~cm}$
$I=2^{2}=4 \mathrm{~cm}, w=2^{3}=8 \mathrm{~cm}$
$I=2^{3}=8 \mathrm{~cm}, w=2^{2}=4 \mathrm{~cm}$
$I=2^{4}=16 \mathrm{~cm}, w=2^{1}=2 \mathrm{~cm}$
15. $2^{3}+4^{5}=1032$
