4.3 Multiplying and Dividing Monomials (pp. 128-13)

Learning Goals: I will learn to

- use multiple strategies to multiply and divide monomials
- solve problems involving multiplication and division of monomials

An area model can be used to illustrate multiplication.

Example: 6×4

Similarly, we can use algebra tiles to model multiplication of monomials.

Examples:

a)
$$2x(3) = 6 \times$$

b)
$$2x(-x) = -2x^2$$

c)
$$-2x(2y) = -4 \approx y$$

To multiply two monomials:

multiply the coefficients

variables

Remember...

$$\begin{array}{c} pos \times pos \\ neg \times neg \end{array} = \begin{array}{c} pos \\ pos \times neg \\ pos \times neg \\ neg \times pos \end{array} = \begin{array}{c} pos \\ neg \times neg \end{array}$$

Develop Understanding

Example 1: Multiply Monomials (p. 129)

Multiply each pair of monomials.

a)
$$(3x)(2x)$$

= $(3)(2)(2)(2)$

b)
$$(3x)(-2x)$$

= $(3)(-2)(x)(x)$
= $-6x^2$

c)
$$(3x)(2y)$$

= $(3)(2)(x)(y)$
= $6xy$

Show You Know

Multiply each pair of monomials.

a)
$$4(2x) = 8x$$

b)
$$(-3x)(5x) = -15x$$

b)
$$(-3x)(5x) = -15x^2$$
 c) $(5y)(4x) = 20xy$

We can use algebra tiles to model division of monomials (multiplication in reverse).

- igcdot 1. Place tiles representing the denominator along one edge.
- 2) 2. Place tiles representing the numerator inside the grid (match to the known edge).
 - 3. Place tiles representing the quotient (answer) along the remaining edge.

To divide two monomials:

and use exponent rules to divide the variables

Remember...

$$\begin{array}{c} pos \div pos \\ neg \div neg \\ \\ pos \div neg \\ neg \div pos \end{array} = \begin{array}{c} pos \\ \\ \hline a^{N} \\ \hline a^{n} \end{array} = a^{N-N}$$

Example 2: Divide Monomials (p. 130)

Divide each pair of monomials.

a)
$$(8x^2) \div (4x) = 2x$$

b)
$$\frac{-4xy}{2y} = \left(-\frac{4}{2}\right)\left(\frac{x}{1}\right)\left(\frac{y}{1}\right)$$

Show You Know

Divide each pair of monomials.

a)
$$(6x^2) \div (-2x) = -3x$$

b)
$$\frac{10xy}{5y}$$

c)
$$\frac{-12xy}{-3x} = \left(\frac{-12}{-3}\right)\left(\frac{2}{2}\right)\left(\frac{1}{1}\right)$$

Example 3: Apply Monomial Division (p. 131)

The area of a rectangle is given by the expression $15x^2$. The width of the rectangle is represented by 3x.)

- a) What is the length of the rectangle in terms of x?
- b) Choose a value for x. Draw the rectangle to scale. Is the area of the rectangle $15x^2$? How do you know?

$$A = 15x^{2}$$

$$\frac{H}{W} = \frac{lw}{w}$$

$$\frac{A}{W} = l \qquad \Rightarrow \frac{15x^2}{3x} = 5x$$

b) choose
$$x = 2$$
 7 length = $5x$
= $5(2^2)$
= $5(4)$ - $60units^2$

$$= 10$$
 $= 10$
 $= 30$
 $= 3(2)$
 $= 6$

Key Ideas

- You can use a model, such as algebra tiles, to represent the multiplication and division of monomials.
- To multiply two monomials, multiply the coefficients and use the exponent rules to multiply the variables.
- To divide two monomials, divide the coefficients and use the exponent rules to divide the variables.